__all__ = (
"FilterLoadedBasisFunction",
"OnceInNightBasisFunction",
"SunAltHighLimitBasisFunction",
"TimeToTwilightBasisFunction",
"NotTwilightBasisFunction",
"AfterEveningTwiBasisFunction",
"ForceDelayBasisFunction",
"HourAngleLimitBasisFunction",
"MoonDownBasisFunction",
"FractionOfObsBasisFunction",
"CloudedOutBasisFunction",
"RisingMoreBasisFunction",
"SoftDelayBasisFunction",
"LookAheadDdfBasisFunction",
"SunAltLimitBasisFunction",
"TimeInTwilightBasisFunction",
"NightModuloBasisFunction",
"EndOfEveningBasisFunction",
"TimeToScheduledBasisFunction",
"CloseToTwilightBasisFunction",
"MoonDistPointRangeBasisFunction",
"AirmassPointRangeBasisFunction",
"InTimeWindowBasisFunction",
)
import warnings
import numpy as np
from rubin_scheduler.scheduler import features
from rubin_scheduler.scheduler.basis_functions import BaseBasisFunction
from rubin_scheduler.scheduler.utils import IntRounded, match_hp_resolution
from rubin_scheduler.utils import DEFAULT_NSIDE, _angular_separation, ra_dec2_hpid
def send_unused_deprecation_warning(name):
message = (
f"The feasibility basis function {name} is not in use, "
"may be broken, and will be deprecated shortly. "
"Please contact the rubin_scheduler maintainers if "
"this is in use elsewhere."
)
warnings.warn(message, FutureWarning)
[docs]
class FilterLoadedBasisFunction(BaseBasisFunction):
"""Check that the filter(s) needed are loaded.
Are the filters in `filternames` loaded and available?
Parameters
----------
filternames : `str` or `list` [ `str` ]
The filternames that need to be mounted to execute.
"""
def __init__(self, filternames="r"):
super(FilterLoadedBasisFunction, self).__init__()
if not isinstance(filternames, list):
filternames = [filternames]
self.filternames = filternames
[docs]
def check_feasibility(self, conditions):
for filtername in self.filternames:
result = filtername in conditions.mounted_filters
if result is False:
return result
return result
[docs]
class InTimeWindowBasisFunction(BaseBasisFunction):
"""Only let a survey go if it is in a defined season
Parameters
----------
mjd_windows : `list`
List of mjd pairs. feasability will only pass if the
current MJD falls in a viable range, e.g.
seaons=[[1,2], [10,13]], means observations can happen
on mjd=1,2,10,11,12,13.
"""
def __init__(self, mjd_windows=[]):
super().__init__()
self.mjd_windows = mjd_windows
[docs]
def check_feasibility(self, conditions):
result = False
for mjd_windows in self.mjd_windows:
if np.min(mjd_windows) <= conditions.mjd <= np.max(mjd_windows):
result = True
return result
[docs]
class AirmassPointRangeBasisFunction(BaseBasisFunction):
"""Set an airmass limit for a single point
Maps the point to the nearest HEALpixel and uses
the Conditions airmass map, so precision of the
airmass limit that is applied is limited by the
HEALpix resolution.
Parameters
----------
ra : `float`
The RA of the point (degrees)
dec : `float`
The Dec of the point (degrees)
airmass_range : `list`
The valid airmass range, default [1.05, 2.7].
"""
def __init__(self, ra, dec, airmass_range=[1.05, 2.7], nside=DEFAULT_NSIDE):
super().__init__()
self.hpid = ra_dec2_hpid(nside, ra, dec)
self.airmass_range = airmass_range
[docs]
def check_feasibility(self, conditions):
result = False
airmass = match_hp_resolution(conditions.airmass, nside_out=self.nside)[self.hpid]
if (np.min(self.airmass_range) <= airmass) & (airmass <= np.max(self.airmass_range)):
result = True
return result
[docs]
class MoonDistPointRangeBasisFunction(BaseBasisFunction):
"""Set a moon distance limit for a single point.
Parameters
----------
ra : `float`
The RA of the point (degrees)
dec : `float`
The Dec of the point (degrees)
moon_limit : `float`
The angular distance to demand from the moon (degrees).
Default 15.
"""
def __init__(self, ra, dec, moon_limit=15.0):
super().__init__()
self.ra = np.radians(ra)
self.dec = np.radians(dec)
self.moon_limit = np.radians(moon_limit)
[docs]
def check_feasibility(self, conditions):
result = False
moon_dist = _angular_separation(self.ra, self.dec, conditions.moon_ra, conditions.moon_dec)
if moon_dist > self.moon_limit:
result = True
return result
[docs]
class CloseToTwilightBasisFunction(BaseBasisFunction):
"""Only execute if the sun is higher than `sun_alt_limit`,
the current time is within `time_to_12deg` of -12 degree twilight,
and there is at least `time_remaining` time left before -12 degree
twilight.
Is the current time and sun altitude close to twilight, but not too close?
Parameters
----------
max_sun_alt_limit : `float`
The sun altitude limit (degrees). Sun must be higher than this
at sunset to execute
max_time_to_12deg : `float`
How much time must be remaining before 12 degree twilight in
the morning (minutes)
min_time_remaining : `float`
Minimum about of time that must be available before trying to
execute (minutes)
Notes
-----
This is primarily useful for surveys which must execute within close
limits of -12 degree twilight.
"""
def __init__(self, max_sun_alt_limit=-14.8, max_time_to_12deg=21.0, min_time_remaining=15.0):
super().__init__()
if max_time_to_12deg < min_time_remaining:
raise ValueError(
"time_to_12deg value of %f is less than time_remaining value of %f."
% (max_time_to_12deg, min_time_remaining)
)
self.sun_alt_limit = np.radians(max_sun_alt_limit)
self.time_to_12deg = max_time_to_12deg / 60.0 / 24.0
self.min_time_remaining = min_time_remaining / 60.0 / 24.0
[docs]
def check_feasibility(self, conditions):
result = False
# If the sun is high, it's ok to execute
if conditions.sun_alt > self.sun_alt_limit:
result = True
time_left = conditions.sun_n12_rising - conditions.mjd
if time_left < self.time_to_12deg:
result = True
if time_left < self.min_time_remaining:
result = False
return result
[docs]
class OnceInNightBasisFunction(BaseBasisFunction):
"""Stop observing if something has been executed already in the night
Parameters
----------
notes : `list` [ `str` ]
A list of str to check if any observations with a matching note exist.
"""
def __init__(self, notes=[]):
super(OnceInNightBasisFunction, self).__init__()
self.survey_features["note_in_night"] = features.NoteInNight(notes=notes)
[docs]
def check_feasibility(self, conditions):
result = True
if self.survey_features["note_in_night"].feature > 0:
result = False
return result
[docs]
class SunAltHighLimitBasisFunction(BaseBasisFunction):
"""Don't observe unless the sun is above some limit
Parameters
----------
alt_limit : float (-15)
Sun must be above alt_limit (degrees). Default -15.
"""
def __init__(self, alt_limit=-15.0):
super(SunAltHighLimitBasisFunction, self).__init__()
self.alt_limit = np.radians(alt_limit)
[docs]
def check_feasibility(self, conditions):
result = True
if conditions.sun_alt < self.alt_limit:
result = False
return result
[docs]
class NightModuloBasisFunction(BaseBasisFunction):
"""Only return true on certain nights"""
def __init__(self, pattern=None):
super(NightModuloBasisFunction, self).__init__()
if pattern is None:
pattern = [True, False]
self.pattern = pattern
self.mod_val = len(self.pattern)
[docs]
def check_feasibility(self, conditions):
indx = int(conditions.night % self.mod_val)
result = self.pattern[indx]
return result
[docs]
class TimeInTwilightBasisFunction(BaseBasisFunction):
"""Make sure there is some time left in twilight.
Parameters
----------
time_needed : float (5)
The time needed remaining in twilight (minutes)
"""
def __init__(self, time_needed=5.0):
super(TimeInTwilightBasisFunction, self).__init__()
self.time_needed = time_needed / 60.0 / 24.0 # To days
[docs]
def check_feasibility(self, conditions):
result = False
time1 = conditions.sun_n18_setting - conditions.mjd
time2 = conditions.sun_n12_rising - conditions.mjd
if time1 > self.time_needed:
result = True
else:
if conditions.sunAlt > np.radians(-18.0):
if time2 > self.time_needed:
result = True
return result
[docs]
class AfterEveningTwiBasisFunction(BaseBasisFunction):
"""Only execute right after evening twilight"""
def __init__(self, time_after=30.0, alt_limit=18):
super(AfterEveningTwiBasisFunction, self).__init__()
self.time_after = IntRounded(time_after / 60.0 / 24.0)
self.alt_limit = str(alt_limit)
[docs]
def check_feasibility(self, conditions):
available_time = conditions.mjd - getattr(conditions, "sun_n" + self.alt_limit + "_setting")
result = IntRounded(available_time) < self.time_after
return result
[docs]
class EndOfEveningBasisFunction(BaseBasisFunction):
"""Only let observations happen in a limited time before twilight"""
def __init__(self, time_remaining=30.0, alt_limit=18):
super(EndOfEveningBasisFunction, self).__init__()
self.time_remaining = IntRounded(time_remaining / 60.0 / 24.0)
self.alt_limit = str(alt_limit)
[docs]
def check_feasibility(self, conditions):
available_time = getattr(conditions, "sun_n" + self.alt_limit + "_rising") - conditions.mjd
result = IntRounded(available_time) < self.time_remaining
return result
[docs]
class TimeToTwilightBasisFunction(BaseBasisFunction):
"""Make sure there is enough time before twilight. Useful
if you want to check before starting a long sequence of observations.
Parameters
----------
time_needed : float (30.)
The time needed to run a survey (mintues).
alt_limit : int (18)
The sun altitude limit to use. Must be 12 or 18
"""
def __init__(self, time_needed=30.0, alt_limit=18):
super(TimeToTwilightBasisFunction, self).__init__()
self.time_needed = time_needed / 60.0 / 24.0 # To days
self.alt_limit = str(alt_limit)
[docs]
def check_feasibility(self, conditions):
available_time = getattr(conditions, "sun_n" + self.alt_limit + "_rising") - conditions.mjd
result = available_time > self.time_needed
return result
[docs]
class TimeToScheduledBasisFunction(BaseBasisFunction):
"""Make sure there is enough time before next scheduled observation.
Useful if you want to check before starting a long sequence of
observations.
Parameters
----------
time_needed : float (30.)
The time needed to run a survey (mintues).
"""
def __init__(self, time_needed=30.0):
super(TimeToScheduledBasisFunction, self).__init__()
self.time_needed = time_needed / 60.0 / 24.0 # To days
[docs]
def check_feasibility(self, conditions):
if len(conditions.scheduled_observations) == 0:
return True
available_time = np.min(conditions.scheduled_observations) - conditions.mjd
result = available_time > self.time_needed
return result
[docs]
class NotTwilightBasisFunction(BaseBasisFunction):
def __init__(self, sun_alt_limit=-18):
"""
# Should be -18 or -12
"""
self.sun_alt_limit = str(int(sun_alt_limit)).replace("-", "n")
super(NotTwilightBasisFunction, self).__init__()
[docs]
def check_feasibility(self, conditions):
result = True
if conditions.mjd < getattr(conditions, "sun_" + self.sun_alt_limit + "_setting"):
result = False
if conditions.mjd > getattr(conditions, "sun_" + self.sun_alt_limit + "_rising"):
result = False
return result
[docs]
class ForceDelayBasisFunction(BaseBasisFunction):
"""Keep a survey from executing too rapidly.
Parameters
----------
days_delay : `float`, optional
The number of days to force a gap on.
scheduler_note : `str` or None, optional
The value of the scheduler_note to count.
Default None will not consider scheduler_note.
survey_name : `str` or None, optional
Backwards compatible version of scheduler_note.
"""
def __init__(self, days_delay=2.0, scheduler_note=None, survey_name=None):
super(ForceDelayBasisFunction, self).__init__()
self.days_delay = days_delay
if scheduler_note is None and survey_name is not None:
self.scheduler_note = survey_name
else:
self.scheduler_note = scheduler_note
self.survey_features["last_obs_self"] = features.LastObservation(scheduler_note=self.scheduler_note)
[docs]
def check_feasibility(self, conditions):
result = True
if conditions.mjd - self.survey_features["last_obs_self"].feature["mjd"] < self.days_delay:
result = False
return result
[docs]
class SoftDelayBasisFunction(BaseBasisFunction):
"""Like Force_delay, but go ahead and let things catch up if they fall
far behind.
Parameters
----------
fractions : `list` [`float`]
delays : `list` [`float`]
scheduler_note : `str` or None, optional
The scheduler_note to identify observations from a given survey or
survey mode.
survey_name : `str` or None, optional
Deprecated version of scheduler_note. Overriden by scheduler_note
if not None.
"""
def __init__(
self, fractions=[0.000, 0.009, 0.017], delays=[0.0, 0.5, 1.5], scheduler_note=None, survey_name=None
):
if len(fractions) != len(delays):
raise ValueError("fractions and delays must be same length")
super(SoftDelayBasisFunction, self).__init__()
self.delays = delays
if scheduler_note is None and survey_name is not None:
self.scheduler_note = survey_name
else:
self.scheduler_note = scheduler_note
self.survey_features["last_obs_self"] = features.LastObservation(scheduler_note=self.scheduler_note)
self.fractions = fractions
self.survey_features["N_total"] = features.NObsCount(note=None)
self.survey_features["N_note"] = features.NObsCount(note=self.scheduler_note)
[docs]
def check_feasibility(self, conditions):
result = True
current_ratio = self.survey_features["N_note"].feature / self.survey_features["N_total"].feature
indx = np.searchsorted(self.fractions, current_ratio)
if indx == len(self.fractions):
indx -= 1
delay = self.delays[indx]
if conditions.mjd - self.survey_features["last_obs_self"].feature["mjd"] < delay:
result = False
return result
[docs]
class HourAngleLimitBasisFunction(BaseBasisFunction):
"""Only execute a survey in limited hour angle ranges. Useful for
limiting Deep Drilling Fields.
Parameters
----------
RA : float (0.)
RA of the target (degrees).
ha_limits : list of lists
limits for what hour angles are acceptable (hours). e.g.,
to give 4 hour window around RA=0, ha_limits=[[22,24], [0,2]]
"""
def __init__(self, RA=0.0, ha_limits=None):
super(HourAngleLimitBasisFunction, self).__init__()
self.ra_hours = RA / 360.0 * 24.0
self.ha_limits = np.array(ha_limits)
[docs]
def check_feasibility(self, conditions):
target_ha = (conditions.lmst - self.ra_hours) % 24
# Are we in any of the possible windows
result = False
for limit in self.ha_limits:
lres = limit[0] <= target_ha < limit[1]
result = result or lres
return result
[docs]
class MoonDownBasisFunction(BaseBasisFunction):
"""Demand the moon is down"""
[docs]
def check_feasibility(self, conditions):
result = True
if conditions.moon_alt > 0:
result = False
return result
[docs]
class FractionOfObsBasisFunction(BaseBasisFunction):
"""Limit the fraction of all observations that can be labelled a certain
scheduler note.
Useful for keeping DDFs from exceeding a given fraction
of the total survey.
Parameters
----------
frac_total : `float`
The fraction of total observations that can be of this survey
scheduler_note : `str` or None, optional
The scheduler_note to identify observations from a given survey or
survey mode.
survey_name : `str` or None, optional
Deprecated version of scheduler_note. Overriden by scheduler_note
if scheduler_note not None.
"""
def __init__(self, frac_total, scheduler_note=None, survey_name=None):
super(FractionOfObsBasisFunction, self).__init__()
if scheduler_note is None and survey_name is not None:
self.scheduler_note = survey_name
else:
self.scheduler_note = scheduler_note
self.frac_total = frac_total
self.survey_features["N_total"] = features.NObsCount(note=None)
self.survey_features["N_note"] = features.NObsCount(note=self.scheduler_note)
[docs]
def check_feasibility(self, conditions):
# If nothing has been observed, fine to go
result = True
if self.survey_features["N_total"].feature > 0:
ratio = self.survey_features["N_note"].feature / self.survey_features["N_total"].feature
if ratio > self.frac_total:
result = False
return result
[docs]
class LookAheadDdfBasisFunction(BaseBasisFunction):
"""Look into the future to decide if it's a good time to observe or block.
Parameters
----------
frac_total : float
The fraction of total observations that can be of this survey
aggressive_fraction : float
If the fraction of observations drops below ths value, be more
aggressive in scheduling. e.g., do not wait for conditions to
improve, execute as soon as possible.
time_needed : float (30.)
Estimate of the amount of time needed to execute DDF sequence
(minutes).
RA : float (0.)
The RA of the DDF
ha_limits : list of lists (None)
limits for what hour angles are acceptable (hours). e.g.,
to give 4 hour window around HA=0, ha_limits=[[22,24], [0,2]]
scheduler_note : `str` or None, optional
The scheduler_note to identify observations from a given survey or
survey mode.
survey_name : `str` or None, optional
Deprecated version of scheduler_note. Overriden by scheduler_note
if scheduler_note not None.
time_jump : float (44.)
The amount of time to assume will jump ahead if another survey
executes (minutes)
sun_alt_limit : float (-18.)
The limit to assume twilight starts (degrees)
"""
def __init__(
self,
frac_total,
aggressive_fraction,
time_needed=30.0,
RA=0.0,
ha_limits=None,
scheduler_note=None,
survey_name=None,
time_jump=44.0,
sun_alt_limit=-18.0,
):
super(LookAheadDdfBasisFunction, self).__init__()
if aggressive_fraction > frac_total:
raise ValueError("aggressive_fraction should be less than frac_total")
if scheduler_note is None and survey_name is not None:
self.scheduler_note = survey_name
else:
self.scheduler_note = scheduler_note
self.frac_total = frac_total
self.ra_hours = RA / 360.0 * 24.0
self.ha_limits = np.array(ha_limits)
self.sun_alt_limit = str(int(sun_alt_limit)).replace("-", "n")
self.time_jump = time_jump / 60.0 / 24.0 # To days
self.time_needed = time_needed / 60.0 / 24.0 # To days
self.aggressive_fraction = aggressive_fraction
self.survey_features["N_total"] = features.NObsCount(note=None)
self.survey_features["N_note"] = features.NObsCount(note=self.scheduler_note)
[docs]
def check_feasibility(self, conditions):
result = True
target_ha = (conditions.lmst - self.ra_hours) % 24
ratio = self.survey_features["N_note"].feature / self.survey_features["N_total"].feature
available_time = getattr(conditions, "sun_" + self.sun_alt_limit + "_rising") - conditions.mjd
# If it's more that self.time_jump to hour angle zero
# See if there will be enough time to twilight in the future
if (IntRounded(target_ha) > IntRounded(12)) & (
IntRounded(target_ha) < IntRounded(24.0 - self.time_jump)
):
if IntRounded(available_time) > IntRounded(self.time_needed + self.time_jump):
result = False
# If we paused for better conditions, but the moon will
# rise, turn things back on.
if IntRounded(conditions.moon_alt) < IntRounded(0):
if IntRounded(conditions.moonrise) > IntRounded(conditions.mjd):
if IntRounded(conditions.moonrise - conditions.mjd) > IntRounded(self.time_jump):
result = True
# If the moon is up and will set soon, pause
if IntRounded(conditions.moon_alt) > IntRounded(0):
time_after_moonset = (
getattr(conditions, "sun_" + self.sun_alt_limit + "_rising") - conditions.moonset
)
if IntRounded(conditions.moonset) > IntRounded(self.time_jump):
if IntRounded(time_after_moonset) > IntRounded(self.time_needed):
result = False
# If the survey has fallen far behind, be agressive and observe
# anytime it's up.
if IntRounded(ratio) < IntRounded(self.aggressive_fraction):
result = True
return result
[docs]
class CloudedOutBasisFunction(BaseBasisFunction):
def __init__(self, cloud_limit=0.7):
super(CloudedOutBasisFunction, self).__init__()
self.cloud_limit = cloud_limit
[docs]
def check_feasibility(self, conditions):
result = True
if conditions.bulk_cloud > self.cloud_limit:
result = False
return result
[docs]
class RisingMoreBasisFunction(BaseBasisFunction):
"""Say a spot is not available if it will rise substantially before
twilight.
Parameters
----------
RA : float
The RA of the point in the sky (degrees)
pad : float
When to start observations if there's plenty of time before
twilight (minutes)
"""
def __init__(self, RA, pad=30.0):
super(RisingMoreBasisFunction, self).__init__()
self.ra_hours = RA * 24 / 360.0
self.pad = pad / 60.0 # To hours
[docs]
def check_feasibility(self, conditions):
result = True
# Calculating hour angle instead of using conditions.HA
# because want -12 to +12 hours instead of 0 - 2pi values.
hour_angle = conditions.lmst - self.ra_hours
# If it's rising, and twilight is well beyond when it crosses
# the meridian
time_to_twi = (conditions.sun_n18_rising - conditions.mjd) * 24.0
if (hour_angle < -self.pad) & (np.abs(hour_angle) < (time_to_twi - self.pad)):
result = False
return result
[docs]
class SunAltLimitBasisFunction(BaseBasisFunction):
"""Only observe if the sun is below a given altitude limit.
Parameters
----------
alt_limit : `float`
The maximum altitude for the sun.
"""
def __init__(self, alt_limit=-12.1):
super(SunAltLimitBasisFunction, self).__init__()
self.alt_limit = np.radians(alt_limit)
[docs]
def check_feasibility(self, conditions):
result = True
if conditions.sun_alt > self.alt_limit:
result = False
return result