Source code for rubin_scheduler.scheduler.basis_functions.feasibility_funcs

__all__ = (
    "FilterLoadedBasisFunction",
    "BandLoadedBasisFunction",
    "OnceInNightBasisFunction",
    "SunAltHighLimitBasisFunction",
    "TimeToTwilightBasisFunction",
    "NotTwilightBasisFunction",
    "AfterEveningTwiBasisFunction",
    "ForceDelayBasisFunction",
    "HourAngleLimitBasisFunction",
    "MoonDownBasisFunction",
    "FractionOfObsBasisFunction",
    "CloudedOutBasisFunction",
    "RisingMoreBasisFunction",
    "SoftDelayBasisFunction",
    "LookAheadDdfBasisFunction",
    "SunAltLimitBasisFunction",
    "TimeInTwilightBasisFunction",
    "NightModuloBasisFunction",
    "EndOfEveningBasisFunction",
    "TimeToScheduledBasisFunction",
    "CloseToTwilightBasisFunction",
    "MoonDistPointRangeBasisFunction",
    "AirmassPointRangeBasisFunction",
    "InTimeWindowBasisFunction",
)

import warnings

import numpy as np

from rubin_scheduler.scheduler import features
from rubin_scheduler.scheduler.basis_functions import BaseBasisFunction
from rubin_scheduler.scheduler.utils import IntRounded, match_hp_resolution
from rubin_scheduler.utils import DEFAULT_NSIDE, _angular_separation, ra_dec2_hpid


def send_unused_deprecation_warning(name):
    message = (
        f"The feasibility basis function {name} is not in use, "
        "may be broken, and will be deprecated shortly. "
        "Please contact the rubin_scheduler maintainers if "
        "this is in use elsewhere."
    )
    warnings.warn(message, FutureWarning)


[docs] class BandLoadedBasisFunction(BaseBasisFunction): """Check that the band(s) needed are loaded. Are the bands in `bandnames` loaded and available? Parameters ---------- bandnames : `str` or `list` [ `str` ] The bandnames that need to be mounted to execute. """ def __init__(self, bandnames="r"): super(BandLoadedBasisFunction, self).__init__() if not isinstance(bandnames, list): bandnames = [bandnames] self.bandnames = bandnames
[docs] def check_feasibility(self, conditions): for bandname in self.bandnames: result = bandname in conditions.mounted_bands if result is False: return result return result
[docs] class FilterLoadedBasisFunction(BandLoadedBasisFunction): def __init__(self, filternames="r"): warnings.warn("Deprecated in favor of BandLoadedBasisFunction", FutureWarning) super().__init__(bandnames=filternames)
[docs] class InTimeWindowBasisFunction(BaseBasisFunction): """Only let a survey go if it is in a defined season Parameters ---------- mjd_windows : `list` List of mjd pairs. feasability will only pass if the current MJD falls in a viable range, e.g. seaons=[[1,2], [10,13]], means observations can happen on mjd=1,2,10,11,12,13. """ def __init__(self, mjd_windows=[]): super().__init__() self.mjd_windows = mjd_windows
[docs] def check_feasibility(self, conditions): result = False for mjd_windows in self.mjd_windows: if np.min(mjd_windows) <= conditions.mjd <= np.max(mjd_windows): result = True return result
[docs] class AirmassPointRangeBasisFunction(BaseBasisFunction): """Set an airmass limit for a single point Maps the point to the nearest HEALpixel and uses the Conditions airmass map, so precision of the airmass limit that is applied is limited by the HEALpix resolution. Parameters ---------- ra : `float` The RA of the point (degrees) dec : `float` The Dec of the point (degrees) airmass_range : `list` The valid airmass range, default [1.05, 2.7]. """ def __init__(self, ra, dec, airmass_range=[1.05, 2.7], nside=DEFAULT_NSIDE): super().__init__() self.hpid = ra_dec2_hpid(nside, ra, dec) self.airmass_range = airmass_range
[docs] def check_feasibility(self, conditions): result = False airmass = match_hp_resolution(conditions.airmass, nside_out=self.nside)[self.hpid] if (np.min(self.airmass_range) <= airmass) & (airmass <= np.max(self.airmass_range)): result = True return result
[docs] class MoonDistPointRangeBasisFunction(BaseBasisFunction): """Set a moon distance limit for a single point. Parameters ---------- ra : `float` The RA of the point (degrees) dec : `float` The Dec of the point (degrees) moon_limit : `float` The angular distance to demand from the moon (degrees). Default 15. """ def __init__(self, ra, dec, moon_limit=15.0): super().__init__() self.ra = np.radians(ra) self.dec = np.radians(dec) self.moon_limit = np.radians(moon_limit)
[docs] def check_feasibility(self, conditions): result = False moon_dist = _angular_separation(self.ra, self.dec, conditions.moon_ra, conditions.moon_dec) if moon_dist > self.moon_limit: result = True return result
[docs] class CloseToTwilightBasisFunction(BaseBasisFunction): """Only execute if the sun is higher than `sun_alt_limit`, the current time is within `time_to_12deg` of -12 degree twilight, and there is at least `time_remaining` time left before -12 degree twilight. Is the current time and sun altitude close to twilight, but not too close? Parameters ---------- max_sun_alt_limit : `float` The sun altitude limit (degrees). Sun must be higher than this at sunset to execute max_time_to_12deg : `float` How much time must be remaining before 12 degree twilight in the morning (minutes) min_time_remaining : `float` Minimum about of time that must be available before trying to execute (minutes) Notes ----- This is primarily useful for surveys which must execute within close limits of -12 degree twilight. """ def __init__(self, max_sun_alt_limit=-14.8, max_time_to_12deg=21.0, min_time_remaining=15.0): super().__init__() if max_time_to_12deg < min_time_remaining: raise ValueError( "time_to_12deg value of %f is less than time_remaining value of %f." % (max_time_to_12deg, min_time_remaining) ) self.sun_alt_limit = np.radians(max_sun_alt_limit) self.time_to_12deg = max_time_to_12deg / 60.0 / 24.0 self.min_time_remaining = min_time_remaining / 60.0 / 24.0
[docs] def check_feasibility(self, conditions): result = False # If the sun is high, it's ok to execute if conditions.sun_alt > self.sun_alt_limit: result = True time_left = conditions.sun_n12_rising - conditions.mjd if time_left < self.time_to_12deg: result = True if time_left < self.min_time_remaining: result = False return result
[docs] class OnceInNightBasisFunction(BaseBasisFunction): """Stop observing if something has been executed already in the night Parameters ---------- notes : `list` [ `str` ] A list of str to check if any observations with a matching note exist. """ def __init__(self, notes=[]): super(OnceInNightBasisFunction, self).__init__() self.survey_features["note_in_night"] = features.NoteInNight(notes=notes)
[docs] def check_feasibility(self, conditions): result = True if self.survey_features["note_in_night"].feature > 0: result = False return result
[docs] class SunAltHighLimitBasisFunction(BaseBasisFunction): """Don't observe unless the sun is above some limit Parameters ---------- alt_limit : float (-15) Sun must be above alt_limit (degrees). Default -15. """ def __init__(self, alt_limit=-15.0): super(SunAltHighLimitBasisFunction, self).__init__() self.alt_limit = np.radians(alt_limit)
[docs] def check_feasibility(self, conditions): result = True if conditions.sun_alt < self.alt_limit: result = False return result
[docs] class NightModuloBasisFunction(BaseBasisFunction): """Only return true on certain nights""" def __init__(self, pattern=None): super(NightModuloBasisFunction, self).__init__() if pattern is None: pattern = [True, False] self.pattern = pattern self.mod_val = len(self.pattern)
[docs] def check_feasibility(self, conditions): indx = int(conditions.night % self.mod_val) result = self.pattern[indx] return result
[docs] class TimeInTwilightBasisFunction(BaseBasisFunction): """Make sure there is some time left in twilight. Parameters ---------- time_needed : float (5) The time needed remaining in twilight (minutes) """ def __init__(self, time_needed=5.0): send_unused_deprecation_warning("TimeInTwilightBasisFunction") super(TimeInTwilightBasisFunction, self).__init__() self.time_needed = time_needed / 60.0 / 24.0 # To days
[docs] def check_feasibility(self, conditions): result = False time1 = conditions.sun_n18_setting - conditions.mjd time2 = conditions.sun_n12_rising - conditions.mjd if time1 > self.time_needed: result = True else: if conditions.sun_alt > np.radians(-18.0): if time2 > self.time_needed: result = True return result
[docs] class AfterEveningTwiBasisFunction(BaseBasisFunction): """Only execute right after evening twilight""" def __init__(self, time_after=30.0, alt_limit=18): super(AfterEveningTwiBasisFunction, self).__init__() self.time_after = IntRounded(time_after / 60.0 / 24.0) self.alt_limit = str(alt_limit)
[docs] def check_feasibility(self, conditions): available_time = conditions.mjd - getattr(conditions, "sun_n" + self.alt_limit + "_setting") result = IntRounded(available_time) < self.time_after return result
[docs] class EndOfEveningBasisFunction(BaseBasisFunction): """Only let observations happen in a limited time before twilight""" def __init__(self, time_remaining=30.0, alt_limit=18): super(EndOfEveningBasisFunction, self).__init__() self.time_remaining = IntRounded(time_remaining / 60.0 / 24.0) self.alt_limit = str(alt_limit)
[docs] def check_feasibility(self, conditions): available_time = getattr(conditions, "sun_n" + self.alt_limit + "_rising") - conditions.mjd result = IntRounded(available_time) < self.time_remaining return result
[docs] class TimeToTwilightBasisFunction(BaseBasisFunction): """Make sure there is enough time before twilight. Useful if you want to check before starting a long sequence of observations. Parameters ---------- time_needed : float (30.) The time needed to run a survey (mintues). alt_limit : int (18) The sun altitude limit to use. Must be 12 or 18 """ def __init__(self, time_needed=30.0, alt_limit=18): super(TimeToTwilightBasisFunction, self).__init__() self.time_needed = time_needed / 60.0 / 24.0 # To days self.alt_limit = str(alt_limit)
[docs] def check_feasibility(self, conditions): available_time = getattr(conditions, "sun_n" + self.alt_limit + "_rising") - conditions.mjd result = available_time > self.time_needed return result
[docs] class TimeToScheduledBasisFunction(BaseBasisFunction): """Make sure there is enough time before next scheduled observation. Useful if you want to check before starting a long sequence of observations. Parameters ---------- time_needed : float (30.) The time needed to run a survey (mintues). """ def __init__(self, time_needed=30.0): super(TimeToScheduledBasisFunction, self).__init__() self.time_needed = time_needed / 60.0 / 24.0 # To days
[docs] def check_feasibility(self, conditions): if len(conditions.scheduled_observations) == 0: return True available_time = np.min(conditions.scheduled_observations) - conditions.mjd result = available_time > self.time_needed return result
[docs] class NotTwilightBasisFunction(BaseBasisFunction): def __init__(self, sun_alt_limit=-18): """ # Should be -18 or -12 """ self.sun_alt_limit = str(int(sun_alt_limit)).replace("-", "n") super(NotTwilightBasisFunction, self).__init__()
[docs] def check_feasibility(self, conditions): result = True if conditions.mjd < getattr(conditions, "sun_" + self.sun_alt_limit + "_setting"): result = False if conditions.mjd > getattr(conditions, "sun_" + self.sun_alt_limit + "_rising"): result = False return result
[docs] class ForceDelayBasisFunction(BaseBasisFunction): """Keep a survey from executing too rapidly. Parameters ---------- days_delay : `float`, optional The number of days to force a gap on. scheduler_note : `str` or None, optional The value of the scheduler_note to count. Default None will not consider scheduler_note. survey_name : `str` or None, optional Backwards compatible version of scheduler_note. """ def __init__(self, days_delay=2.0, scheduler_note=None, survey_name=None): super(ForceDelayBasisFunction, self).__init__() self.days_delay = days_delay if scheduler_note is None and survey_name is not None: warnings.warn("survey_name deprecated in favor of scheduler_note", FutureWarning) self.scheduler_note = survey_name else: self.scheduler_note = scheduler_note self.survey_features["last_obs_self"] = features.LastObservation(scheduler_note=self.scheduler_note)
[docs] def check_feasibility(self, conditions): result = True if conditions.mjd - self.survey_features["last_obs_self"].feature["mjd"] < self.days_delay: result = False return result
[docs] class SoftDelayBasisFunction(BaseBasisFunction): """Like Force_delay, but go ahead and let things catch up if they fall far behind. Parameters ---------- fractions : `list` [`float`] delays : `list` [`float`] scheduler_note : `str` or None, optional The scheduler_note to identify observations from a given survey or survey mode. survey_name : `str` or None, optional Deprecated version of scheduler_note. Overriden by scheduler_note if not None. """ def __init__( self, fractions=[0.000, 0.009, 0.017], delays=[0.0, 0.5, 1.5], scheduler_note=None, survey_name=None ): if len(fractions) != len(delays): raise ValueError("fractions and delays must be same length") super(SoftDelayBasisFunction, self).__init__() self.delays = delays if scheduler_note is None and survey_name is not None: warnings.warn("survey_name deprecated in favor of scheduler_note", FutureWarning) self.scheduler_note = survey_name else: self.scheduler_note = scheduler_note self.survey_features["last_obs_self"] = features.LastObservation(scheduler_note=self.scheduler_note) self.fractions = fractions self.survey_features["N_total"] = features.NObsCount(note=None) self.survey_features["N_note"] = features.NObsCount(note=self.scheduler_note)
[docs] def check_feasibility(self, conditions): result = True current_ratio = self.survey_features["N_note"].feature / self.survey_features["N_total"].feature indx = np.searchsorted(self.fractions, current_ratio) if indx == len(self.fractions): indx -= 1 delay = self.delays[indx] if conditions.mjd - self.survey_features["last_obs_self"].feature["mjd"] < delay: result = False return result
[docs] class HourAngleLimitBasisFunction(BaseBasisFunction): """Only execute a survey in limited hour angle ranges. Useful for limiting Deep Drilling Fields. Parameters ---------- RA : float (0.) RA of the target (degrees). ha_limits : list of lists limits for what hour angles are acceptable (hours). e.g., to give 4 hour window around RA=0, ha_limits=[[22,24], [0,2]] """ def __init__(self, RA=0.0, ha_limits=[[22, 24], [0, 2]]): super(HourAngleLimitBasisFunction, self).__init__() self.ra_hours = RA / 360.0 * 24.0 self.ha_limits = np.array(ha_limits)
[docs] def check_feasibility(self, conditions): target_ha = (conditions.lmst - self.ra_hours) % 24 # Are we in any of the possible windows result = False for limit in self.ha_limits: lres = limit[0] <= target_ha < limit[1] result = result or lres return result
[docs] class MoonDownBasisFunction(BaseBasisFunction): """Demand the moon is down"""
[docs] def check_feasibility(self, conditions): result = True if conditions.moon_alt > 0: result = False return result
[docs] class FractionOfObsBasisFunction(BaseBasisFunction): """Limit the fraction of all observations that can be labelled a certain scheduler note. Useful for keeping DDFs from exceeding a given fraction of the total survey. Parameters ---------- frac_total : `float` The fraction of total observations that can be of this survey scheduler_note : `str` or None, optional The scheduler_note to identify observations from a given survey or survey mode. survey_name : `str` or None, optional Deprecated version of scheduler_note. Overriden by scheduler_note if scheduler_note not None. """ def __init__(self, frac_total, scheduler_note=None, survey_name=None): super(FractionOfObsBasisFunction, self).__init__() if scheduler_note is None and survey_name is not None: warnings.warn("survey_name deprecated in favor of scheduler_note", FutureWarning) self.scheduler_note = survey_name else: self.scheduler_note = scheduler_note self.frac_total = frac_total self.survey_features["N_total"] = features.NObsCount(note=None) self.survey_features["N_note"] = features.NObsCount(note=self.scheduler_note)
[docs] def check_feasibility(self, conditions): # If nothing has been observed, fine to go result = True if self.survey_features["N_total"].feature > 0: ratio = self.survey_features["N_note"].feature / self.survey_features["N_total"].feature if ratio > self.frac_total: result = False return result
[docs] class LookAheadDdfBasisFunction(BaseBasisFunction): """Look into the future to decide if it's a good time to observe or block. Parameters ---------- frac_total : float The fraction of total observations that can be of this survey aggressive_fraction : float If the fraction of observations drops below ths value, be more aggressive in scheduling. e.g., do not wait for conditions to improve, execute as soon as possible. time_needed : float (30.) Estimate of the amount of time needed to execute DDF sequence (minutes). RA : float (0.) The RA of the DDF ha_limits : list of lists (None) limits for what hour angles are acceptable (hours). e.g., to give 4 hour window around HA=0, ha_limits=[[22,24], [0,2]] scheduler_note : `str` or None, optional The scheduler_note to identify observations from a given survey or survey mode. survey_name : `str` or None, optional Deprecated version of scheduler_note. Overriden by scheduler_note if scheduler_note not None. time_jump : float (44.) The amount of time to assume will jump ahead if another survey executes (minutes) sun_alt_limit : float (-18.) The limit to assume twilight starts (degrees) """ def __init__( self, frac_total, aggressive_fraction, time_needed=30.0, RA=0.0, ha_limits=None, scheduler_note=None, survey_name=None, time_jump=44.0, sun_alt_limit=-18.0, ): super(LookAheadDdfBasisFunction, self).__init__() if aggressive_fraction > frac_total: raise ValueError("aggressive_fraction should be less than frac_total") if scheduler_note is None and survey_name is not None: warnings.warn("survey_name deprecated in favor of scheduler_note", FutureWarning) self.scheduler_note = survey_name else: self.scheduler_note = scheduler_note self.frac_total = frac_total self.ra_hours = RA / 360.0 * 24.0 self.ha_limits = np.array(ha_limits) self.sun_alt_limit = str(int(sun_alt_limit)).replace("-", "n") self.time_jump = time_jump / 60.0 / 24.0 # To days self.time_needed = time_needed / 60.0 / 24.0 # To days self.aggressive_fraction = aggressive_fraction self.survey_features["N_total"] = features.NObsCount(note=None) self.survey_features["N_note"] = features.NObsCount(note=self.scheduler_note)
[docs] def check_feasibility(self, conditions): result = True target_ha = (conditions.lmst - self.ra_hours) % 24 ratio = self.survey_features["N_note"].feature / self.survey_features["N_total"].feature available_time = getattr(conditions, "sun_" + self.sun_alt_limit + "_rising") - conditions.mjd # If it's more that self.time_jump to hour angle zero # See if there will be enough time to twilight in the future if (IntRounded(target_ha) > IntRounded(12)) & ( IntRounded(target_ha) < IntRounded(24.0 - self.time_jump) ): if IntRounded(available_time) > IntRounded(self.time_needed + self.time_jump): result = False # If we paused for better conditions, but the moon will # rise, turn things back on. if IntRounded(conditions.moon_alt) < IntRounded(0): if IntRounded(conditions.moonrise) > IntRounded(conditions.mjd): if IntRounded(conditions.moonrise - conditions.mjd) > IntRounded(self.time_jump): result = True # If the moon is up and will set soon, pause if IntRounded(conditions.moon_alt) > IntRounded(0): time_after_moonset = ( getattr(conditions, "sun_" + self.sun_alt_limit + "_rising") - conditions.moonset ) if IntRounded(conditions.moonset) > IntRounded(self.time_jump): if IntRounded(time_after_moonset) > IntRounded(self.time_needed): result = False # If the survey has fallen far behind, be agressive and observe # anytime it's up. if IntRounded(ratio) < IntRounded(self.aggressive_fraction): result = True return result
[docs] class CloudedOutBasisFunction(BaseBasisFunction): def __init__(self, cloud_limit=0.7): super(CloudedOutBasisFunction, self).__init__() self.cloud_limit = cloud_limit
[docs] def check_feasibility(self, conditions): result = True if conditions.bulk_cloud > self.cloud_limit: result = False return result
[docs] class RisingMoreBasisFunction(BaseBasisFunction): """Say a spot is not available if it will rise substantially before twilight. Parameters ---------- RA : float The RA of the point in the sky (degrees) pad : float When to start observations if there's plenty of time before twilight (minutes) """ def __init__(self, RA, pad=30.0): super(RisingMoreBasisFunction, self).__init__() self.ra_hours = RA * 24 / 360.0 self.pad = pad / 60.0 # To hours
[docs] def check_feasibility(self, conditions): result = True # Calculating hour angle instead of using conditions.HA # because want -12 to +12 hours instead of 0 - 2pi values. hour_angle = conditions.lmst - self.ra_hours # If it's rising, and twilight is well beyond when it crosses # the meridian time_to_twi = (conditions.sun_n18_rising - conditions.mjd) * 24.0 if (hour_angle < -self.pad) & (np.abs(hour_angle) < (time_to_twi - self.pad)): result = False return result
[docs] class SunAltLimitBasisFunction(BaseBasisFunction): """Only observe if the sun is below a given altitude limit. Parameters ---------- alt_limit : `float` The maximum altitude for the sun. """ def __init__(self, alt_limit=-12.1): super(SunAltLimitBasisFunction, self).__init__() self.alt_limit = np.radians(alt_limit)
[docs] def check_feasibility(self, conditions): result = True if conditions.sun_alt > self.alt_limit: result = False return result