Source code for rubin_scheduler.scheduler.detailers.vary_exptime

__all__ = ("VaryExptDetailer", "calc_target_m5s")

import healpy as hp
import numpy as np
from scipy.stats import binned_statistic

from rubin_scheduler.scheduler.detailers import BaseDetailer
from rubin_scheduler.skybrightness_pre import dark_sky
from rubin_scheduler.utils import DEFAULT_NSIDE, Site, _ra_dec2_hpid, hpid2_ra_dec, m5_flat_sed


[docs] def calc_target_m5s(alt=65.0, fiducial_seeing=0.9, exptime=20.0): """Use the skybrightness model to find some good target m5s. Parameters ---------- alt : `float`, opt Altitude for the target, degrees. Default 65. fiducial_seeing : `float`, opt Fiducial FWHMeff seeing, arcseconds. Default 0.9. exptime : `float`, opt Exposure time for the comparison, seconds. Default 20. Returns ------- goal_m5 : `dict` of `float` dictionary of expected m5 values keyed by bandname """ nside = DEFAULT_NSIDE dark = dark_sky(nside=nside) hpid = np.arange(dark.size, dtype=int) ra, dec = hpid2_ra_dec(nside, hpid) site = Site(name="LSST") alts = site.latitude - dec + 90 alts[np.where(alts > 90)] -= 90 binsize = 5.0 alt_bins = np.arange(0, 90 + binsize, binsize) alts_mid = (alt_bins[0:-1] + alt_bins[1:]) / 2 sky_mags = {} high_alts = np.where(alts > 0)[0] for bandname in dark.dtype.names: sky_mags[bandname], _be, _binn = binned_statistic( alts[high_alts], dark[bandname][high_alts], bins=alt_bins, statistic="mean" ) sky_mags[bandname] = np.interp(alt, alts_mid, sky_mags[bandname]) airmass = 1.0 / np.cos(np.pi / 2.0 - np.radians(alt)) goal_m5 = {} for bandname in sky_mags: goal_m5[bandname] = m5_flat_sed(bandname, sky_mags[bandname], fiducial_seeing, exptime, airmass) return goal_m5
[docs] class VaryExptDetailer(BaseDetailer): """Vary the exposure time on observations to try and keep each observation at uniform depth. Parameters ---------- min_expt : `float` (20.) The minimum exposure time to use (seconds). max_expt : `float` (100.) The maximum exposure time to use target_m5 : `dict` (None) Dictionary with keys of bandnames as str and target 5-sigma depth values as floats. If none, the target_m5s are set to a min_expt exposure at X=1.1 in dark time. """ def __init__(self, nside=DEFAULT_NSIDE, min_expt=20.0, max_expt=100.0, target_m5=None): """""" # Dict to hold all the features we want to track self.survey_features = {} self.nside = nside self.min_exp = min_expt self.max_exp = max_expt if target_m5 is None: self.target_m5 = { "g": 24.381615425253738, "i": 23.41810142458083, "r": 23.964359143049755, "u": 22.978794343692783, "y": 21.755612950787068, "z": 22.80377793629767, } else: self.target_m5 = target_m5
[docs] def __call__(self, obs_array, conditions): """ Parameters ---------- observation_list : `list` of observations The observations to detail. conditions : `rubin_scheduler.scheduler.conditions` object Returns ------- List of observations. """ hpids = _ra_dec2_hpid(self.nside, obs_array["RA"], obs_array["dec"]) new_expts = np.zeros(obs_array.size, dtype=float) for bandname in np.unique(obs_array["band"]): in_filt = np.where(obs_array["band"] == bandname) delta_m5 = self.target_m5[bandname] - conditions.m5_depth[bandname][hpids[in_filt]] # We can get NaNs because dithering pushes the center of the # pointing into masked regions. nan_indices = np.argwhere(np.isnan(delta_m5)).ravel() for indx in nan_indices: bad_hp = hpids[in_filt][indx] # Note this might fail if we run at higher resolution, # then we'd need to look farther for pixels to interpolate. near_pix = hp.get_all_neighbours(conditions.nside, bad_hp) vals = conditions.m5_depth[bandname][near_pix] if True in np.isfinite(vals): estimate_m5 = np.mean(vals[np.isfinite(vals)]) delta_m5[indx] = self.target_m5[bandname] - estimate_m5 else: raise ValueError("Failed to find a nearby unmasked sky value.") new_expts[in_filt] = conditions.exptime * 10 ** (delta_m5 / 1.25) new_expts = np.clip(new_expts, self.min_exp, self.max_exp) # I'm not sure what level of precision we can expect, so let's # just limit to seconds obs_array["exptime"] = np.round(new_expts) return obs_array