[docs]defcalc_target_m5s(alt=65.0,fiducial_seeing=0.9,exptime=20.0):"""Use the skybrightness model to find some good target m5s. Parameters ---------- alt : `float`, opt Altitude for the target, degrees. Default 65. fiducial_seeing : `float`, opt Fiducial FWHMeff seeing, arcseconds. Default 0.9. exptime : `float`, opt Exposure time for the comparison, seconds. Default 20. Returns ------- goal_m5 : `dict` of `float` dictionary of expected m5 values keyed by bandname """nside=DEFAULT_NSIDEdark=dark_sky(nside=nside)hpid=np.arange(dark.size,dtype=int)ra,dec=hpid2_ra_dec(nside,hpid)site=Site(name="LSST")alts=site.latitude-dec+90alts[np.where(alts>90)]-=90binsize=5.0alt_bins=np.arange(0,90+binsize,binsize)alts_mid=(alt_bins[0:-1]+alt_bins[1:])/2sky_mags={}high_alts=np.where(alts>0)[0]forbandnameindark.dtype.names:sky_mags[bandname],_be,_binn=binned_statistic(alts[high_alts],dark[bandname][high_alts],bins=alt_bins,statistic="mean")sky_mags[bandname]=np.interp(alt,alts_mid,sky_mags[bandname])airmass=1.0/np.cos(np.pi/2.0-np.radians(alt))goal_m5={}forbandnameinsky_mags:goal_m5[bandname]=m5_flat_sed(bandname,sky_mags[bandname],fiducial_seeing,exptime,airmass)returngoal_m5
[docs]classVaryExptDetailer(BaseDetailer):"""Vary the exposure time on observations to try and keep each observation at uniform depth. Parameters ---------- min_expt : `float` (20.) The minimum exposure time to use (seconds). max_expt : `float` (100.) The maximum exposure time to use target_m5 : `dict` (None) Dictionary with keys of bandnames as str and target 5-sigma depth values as floats. If none, the target_m5s are set to a min_expt exposure at X=1.1 in dark time. """def__init__(self,nside=DEFAULT_NSIDE,min_expt=20.0,max_expt=100.0,target_m5=None):""""""# Dict to hold all the features we want to trackself.survey_features={}self.nside=nsideself.min_exp=min_exptself.max_exp=max_exptiftarget_m5isNone:self.target_m5={"g":24.381615425253738,"i":23.41810142458083,"r":23.964359143049755,"u":22.978794343692783,"y":21.755612950787068,"z":22.80377793629767,}else:self.target_m5=target_m5
[docs]def__call__(self,obs_array,conditions):""" Parameters ---------- observation_list : `list` of observations The observations to detail. conditions : `rubin_scheduler.scheduler.conditions` object Returns ------- List of observations. """hpids=_ra_dec2_hpid(self.nside,obs_array["RA"],obs_array["dec"])new_expts=np.zeros(obs_array.size,dtype=float)forbandnameinnp.unique(obs_array["band"]):in_filt=np.where(obs_array["band"]==bandname)delta_m5=self.target_m5[bandname]-conditions.m5_depth[bandname][hpids[in_filt]]# We can get NaNs because dithering pushes the center of the# pointing into masked regions.nan_indices=np.argwhere(np.isnan(delta_m5)).ravel()forindxinnan_indices:bad_hp=hpids[in_filt][indx]# Note this might fail if we run at higher resolution,# then we'd need to look farther for pixels to interpolate.near_pix=hp.get_all_neighbours(conditions.nside,bad_hp)vals=conditions.m5_depth[bandname][near_pix]ifTrueinnp.isfinite(vals):estimate_m5=np.mean(vals[np.isfinite(vals)])delta_m5[indx]=self.target_m5[bandname]-estimate_m5else:raiseValueError("Failed to find a nearby unmasked sky value.")new_expts[in_filt]=conditions.exptime*10**(delta_m5/1.25)new_expts=np.clip(new_expts,self.min_exp,self.max_exp)# I'm not sure what level of precision we can expect, so let's# just limit to secondsobs_array["exptime"]=np.round(new_expts)returnobs_array