Source code for rubin_scheduler.scheduler.surveys.dd_surveys

__all__ = ("DeepDrillingSurvey", "generate_dd_surveys", "dd_bfs")

import copy
import logging
import random
from functools import cached_property

import numpy as np

import rubin_scheduler.scheduler.basis_functions as basis_functions
from rubin_scheduler.scheduler import features
from rubin_scheduler.scheduler.surveys import BaseSurvey
from rubin_scheduler.scheduler.utils import ObservationArray
from rubin_scheduler.utils import DEFAULT_NSIDE, ddf_locations, ra_dec2_hpid

log = logging.getLogger(__name__)


[docs] class DeepDrillingSurvey(BaseSurvey): """A survey class for running deep drilling fields. Parameters ---------- basis_functions : list of rubin_scheduler.scheduler.basis_function These should be feasibility basis functions. RA : float The RA of the field (degrees) dec : float The dec of the field to observe (degrees) sequence : list of observation objects or str (rgizy) The sequence of observations to take. Can be a string of list of obs objects. nvis : list of ints The number of visits in each filter. Should be same length as sequence. survey_name : str (DD) The name to give this survey so it can be tracked reward_value : float (101.) The reward value to report if it is able to start (unitless). readtime : float (2.) Readout time for computing approximate time of observing the sequence. (seconds) flush_pad : float (30.) How long to hold observations in the queue after they were expected to be completed (minutes). """ def __init__( self, basis_functions, RA, dec, sequence="rgizy", nvis=[20, 10, 20, 26, 20], exptime=30.0, u_exptime=30.0, nexp=2, ignore_obs=None, survey_name="DD", reward_value=None, readtime=2.0, filter_change_time=120.0, nside=DEFAULT_NSIDE, flush_pad=30.0, seed=42, detailers=None, ): super(DeepDrillingSurvey, self).__init__( nside=nside, basis_functions=basis_functions, detailers=detailers, ignore_obs=ignore_obs, ) random.seed(a=seed) self.ra = np.radians(RA) self.ra_hours = RA / 360.0 * 24.0 self.dec = np.radians(dec) self.survey_name = survey_name self.reward_value = reward_value self.flush_pad = flush_pad / 60.0 / 24.0 # To days self.filter_sequence = [] if isinstance(sequence, str): self.observations = [] for num, filtername in zip(nvis, sequence): for j in range(num): obs = ObservationArray() obs["filter"] = filtername if filtername == "u": obs["exptime"] = u_exptime else: obs["exptime"] = exptime obs["RA"] = self.ra obs["dec"] = self.dec obs["nexp"] = nexp obs["scheduler_note"] = survey_name self.observations.append(obs) else: self.observations = sequence # Let's just make this an array for ease of use self.observations = np.concatenate(self.observations) order = np.argsort(self.observations["filter"]) self.observations = self.observations[order] n_filter_change = np.size(np.unique(self.observations["filter"])) # Make an estimate of how long a seqeunce will take. # Assumes no major rotational or spatial # dithering slowing things down. self.approx_time = ( np.sum(self.observations["exptime"] + readtime * self.observations["nexp"]) / 3600.0 / 24.0 + filter_change_time * n_filter_change / 3600.0 / 24.0 ) # to days if self.reward_value is None: self.extra_features["Ntot"] = features.NObsCount() self.extra_features["N_survey"] = features.NObsCount(note=self.survey_name) @cached_property def roi_hpid(self): hpid = ra_dec2_hpid(self.nside, np.degrees(self.ra), np.degrees(self.dec)) return hpid
[docs] def check_continue(self, observation, conditions): # feasibility basis functions? """ This method enables external calls to check if a given observations that belongs to this survey is feasible or not. This is called once a sequence has started to make sure it can continue. XXX--TODO: Need to decide if we want to develope check_continue, or instead hold the sequence in the survey, and be able to check it that way. """ result = True return result
[docs] def calc_reward_function(self, conditions): result = -np.inf if self._check_feasibility(conditions): if self.reward_value is not None: result = self.reward_value else: # XXX This might backfire if we want to have DDFs with # different fractions of the survey time. Then might need # to define a goal fraction, and have the reward be the # number of observations behind that target fraction. result = self.extra_features["Ntot"].feature / (self.extra_features["N_survey"].feature + 1) return result
[docs] def generate_observations_rough(self, conditions): result = [] if self._check_feasibility(conditions): result = copy.deepcopy(self.observations) # Set the flush_by result["flush_by_mjd"] = conditions.mjd + self.approx_time + self.flush_pad # remove filters that are not mounted mask = np.isin(result["filter"], conditions.mounted_filters) result = result[mask] # Put current loaded filter first ind1 = np.where(result["filter"] == conditions.current_filter)[0] ind2 = np.where(result["filter"] != conditions.current_filter)[0] result = result[ind1.tolist() + (ind2.tolist())] # convert to list of array. Arglebargle, don't understand # why I need a reshape there final_result = [ row.reshape( 1, ) for row in result ] result = final_result return result
def __repr__(self): return ( f"<{self.__class__.__name__} survey_name='{self.survey_name}'" f", RA={self.ra}, dec={self.dec} at {hex(id(self))}>" )
[docs] def dd_bfs( RA, dec, survey_name, ha_limits, frac_total=0.0185 / 2.0, aggressive_frac=0.011 / 2.0, delays=[0.0, 0.5, 1.5], time_needed=62.0, wind_speed_maximum=20.0, nside=None, ): """ Convienence function to generate all the feasibility basis functions """ sun_alt_limit = -18.0 fractions = [0.00, aggressive_frac, frac_total] bfs = [] bfs.append(basis_functions.NotTwilightBasisFunction(sun_alt_limit=sun_alt_limit)) bfs.append(basis_functions.TimeToTwilightBasisFunction(time_needed=time_needed)) bfs.append(basis_functions.AvoidDirectWind(wind_speed_maximum=wind_speed_maximum, nside=nside)) bfs.append(basis_functions.HourAngleLimitBasisFunction(RA=RA, ha_limits=ha_limits)) bfs.append(basis_functions.MoonDownBasisFunction()) bfs.append(basis_functions.FractionOfObsBasisFunction(frac_total=frac_total, survey_name=survey_name)) bfs.append( basis_functions.LookAheadDdfBasisFunction( frac_total, aggressive_frac, sun_alt_limit=sun_alt_limit, time_needed=time_needed, RA=RA, survey_name=survey_name, ha_limits=ha_limits, ) ) bfs.append( basis_functions.SoftDelayBasisFunction(fractions=fractions, delays=delays, survey_name=survey_name) ) bfs.append(basis_functions.TimeToScheduledBasisFunction(time_needed=time_needed)) return bfs
[docs] def generate_dd_surveys( nside=None, nexp=2, detailers=None, euclid_detailers=None, reward_value=100, frac_total=0.0185 / 2.0, aggressive_frac=0.011 / 2.0, exptime=30, u_exptime=30, nvis_master=[8, 20, 10, 20, 26, 20], delays=[0.0, 0.5, 1.5], ): """Utility to return a list of standard deep drilling field surveys. XXX-Someone double check that I got the coordinates right! """ if euclid_detailers is None: euclid_detailers = detailers surveys = [] locations = ddf_locations() # ELAIS S1 survey_name = "DD:ELAISS1" RA = locations["ELAISS1"][0] dec = locations["ELAISS1"][1] ha_limits = ([0.0, 1.5], [21.5, 24.0]) bfs = dd_bfs( RA, dec, survey_name, ha_limits, frac_total=frac_total, aggressive_frac=aggressive_frac, delays=delays, nside=nside, ) surveys.append( DeepDrillingSurvey( bfs, RA, dec, sequence="urgizy", nvis=nvis_master, exptime=exptime, u_exptime=u_exptime, survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers, ) ) # XMM-LSS survey_name = "DD:XMM-LSS" RA = locations["XMM_LSS"][0] dec = locations["XMM_LSS"][1] ha_limits = ([0.0, 1.5], [21.5, 24.0]) bfs = dd_bfs( RA, dec, survey_name, ha_limits, frac_total=frac_total, aggressive_frac=aggressive_frac, delays=delays, nside=nside, ) surveys.append( DeepDrillingSurvey( bfs, RA, dec, sequence="urgizy", exptime=exptime, u_exptime=u_exptime, nvis=nvis_master, survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers, ) ) # Extended Chandra Deep Field South survey_name = "DD:ECDFS" RA = locations["ECDFS"][0] dec = locations["ECDFS"][1] ha_limits = [[0.5, 3.0], [20.0, 22.5]] bfs = dd_bfs( RA, dec, survey_name, ha_limits, frac_total=frac_total, aggressive_frac=aggressive_frac, delays=delays, nside=nside, ) surveys.append( DeepDrillingSurvey( bfs, RA, dec, sequence="urgizy", nvis=nvis_master, exptime=exptime, u_exptime=u_exptime, survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers, ) ) # COSMOS survey_name = "DD:COSMOS" RA = locations["COSMOS"][0] dec = locations["COSMOS"][1] ha_limits = ([0.0, 2.5], [21.5, 24.0]) bfs = dd_bfs( RA, dec, survey_name, ha_limits, frac_total=frac_total, aggressive_frac=aggressive_frac, delays=delays, nside=nside, ) surveys.append( DeepDrillingSurvey( bfs, RA, dec, sequence="urgizy", nvis=nvis_master, exptime=exptime, u_exptime=u_exptime, survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers, ) ) # Euclid Fields # I can use the sequence kwarg to do two positions per sequence filters = "urgizy" nviss = nvis_master survey_name = "DD:EDFS" # Note the sequences need to be in radians since they are using # observation objects directly # Coords from jc.cuillandre@cea.fr Oct 15, 2020 r_as = np.radians([locations["EDFS_a"][0], locations["EDFS_b"][0]]) decs = np.radians([locations["EDFS_a"][1], locations["EDFS_b"][1]]) suffixes = [", a", ", b"] sequence = [] for filtername, nvis in zip(filters, nviss): for ra, dec, suffix in zip(r_as, decs, suffixes): for num in range(nvis): obs = ObservationArray() obs["filter"] = filtername if filtername == "u": obs["exptime"] = u_exptime else: obs["exptime"] = exptime obs["RA"] = ra obs["dec"] = dec obs["nexp"] = nexp obs["scheduler_note"] = survey_name + suffix sequence.append(obs) ha_limits = ([0.0, 1.5], [22.5, 24.0]) # And back to degrees for the basis function. Need to bump up the # time needed since it's a double field. bfs = dd_bfs( np.degrees(r_as[0]), np.degrees(decs[0]), survey_name, ha_limits, frac_total=frac_total, aggressive_frac=aggressive_frac, delays=delays, time_needed=120.0, ) surveys.append( DeepDrillingSurvey( bfs, np.degrees(r_as), np.degrees(decs), sequence=sequence, survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=euclid_detailers, ) ) return surveys