Source code for rubin_scheduler.scheduler.surveys.field_survey

__all__ = ("FieldSurvey", "FieldAltAzSurvey")

import copy
from functools import cached_property

import numpy as np

from rubin_scheduler.utils import DEFAULT_NSIDE, _approx_alt_az2_ra_dec, _ra_dec2_hpid

from ..detailers import AltAz2RaDecDetailer
from ..features import LastObservation, NObsCount
from ..utils import ObservationArray
from . import BaseSurvey


[docs] class FieldSurvey(BaseSurvey): """A survey class for running field surveys. Parameters ---------- basis_functions : `list` [`rubin_scheduler.scheduler.basis_function`] List of basis_function objects detailers : `list` [`rubin_scheduler.scheduler.detailer`] objects The detailers to apply to the list of observations. RA : `float` The RA of the field (degrees) dec : `float` The dec of the field to observe (degrees) sequence : `list` [`str`] The sequence of observations to take. (specify which filters to use). nvisits : `dict` {`str`: `int`} Dictionary of the number of visits in each filter. Default of None will use a backup sequence of 20 visits per filter. Must contain all filters in sequence. exptimes : `dict` {`str`: `float`} Dictionary of the exposure time for visits in each filter. Default of None will use a backup sequence of 38s in u, and 29.2s in all other bands. Must contain all filters in sequence. nexps : dict` {`str`: `int`} Dictionary of the number of exposures per visit in each filter. Default of None will use a backup sequence of 1 exposure per visit in u band, 2 in all other bands. Must contain all filters in sequence. ignore_obs : `list` [`str`] or None Ignore observations with this string in the `scheduler_note`. Will ignore observations which match subsets of the string, as well as the entire string. Ignoring 'mysurvey23' will also ignore 'mysurvey2'. survey_name : `str` or None. The name to give this survey, for debugging and visualization purposes. Also propagated to the 'target_name' in the observation. The default None will construct a name based on the RA/Dec of the field. scheduler_note : `str` or None The value to include in the scheduler note. The scheduler note is for internal, scheduler, use for the purposes of identifying observations to ignore or include for a survey or feature. readtime : `float` Readout time for computing approximate time of observing the sequence. (seconds) filter_change_time : `float` Filter change time, on average. Used for computing approximate time for the observing sequence. (seconds) nside : `float` or None Nside for computing survey basis functions and maps. The default of None will use rubin_scheduler.utils.set_default_nside(). flush_pad : `float` How long to hold observations in the queue after they were expected to be completed (minutes). """ def __init__( self, basis_functions, RA, dec, sequence="ugrizy", nvisits=None, exptimes=None, nexps=None, ignore_obs=None, survey_name=None, target_name=None, science_program=None, observation_reason=None, scheduler_note=None, readtime=2.4, filter_change_time=120.0, nside=DEFAULT_NSIDE, flush_pad=30.0, detailers=None, ): default_nvisits = {"u": 20, "g": 20, "r": 20, "i": 20, "z": 20, "y": 20} default_exptimes = {"u": 38, "g": 29.2, "r": 29.2, "i": 29.2, "z": 29.2, "y": 29.2} default_nexps = {"u": 1, "g": 2, "r": 2, "i": 2, "z": 2, "y": 2} self.ra = np.radians(RA) self.ra_hours = RA / 360.0 * 24.0 self.dec = np.radians(dec) self.ra_deg, self.dec_deg = RA, dec self.survey_name = survey_name if self.survey_name is None: self._generate_survey_name(target_name=target_name) # Backfill target name if it wasn't set if target_name is None: target_name = self.survey_name super().__init__( nside=nside, basis_functions=basis_functions, detailers=detailers, ignore_obs=ignore_obs, survey_name=self.survey_name, target_name=target_name, science_program=science_program, observation_reason=observation_reason, ) # It's useful to save these as class attributes too self.target_name = target_name self.science_program = science_program self.observation_reason = observation_reason self.indx = _ra_dec2_hpid(self.nside, self.ra, self.dec) # Set all basis function equal. self.basis_weights = np.ones(len(basis_functions)) / len(basis_functions) self.flush_pad = flush_pad / 60.0 / 24.0 # To days self.filter_sequence = [] self.scheduler_note = scheduler_note if self.scheduler_note is None: self.scheduler_note = self.survey_name # This sets up what a requested "observation" looks like. # For sequences, each 'observation' is more than one exposure. # When generating actual observations, filters which are not available # are not included in the requested sequence. if nvisits is None: nvisits = default_nvisits if exptimes is None: exptimes = default_exptimes if nexps is None: nexps = default_nexps # Do a little shuffling if this was not configured quite as expected if isinstance(sequence, str): if isinstance(nvisits, (float, int)): nvisits = dict([(filtername, nvisits) for filtername in sequence]) if isinstance(exptimes, (float, int)): exptimes = dict([(filtername, exptimes) for filtername in sequence]) if isinstance(nexps, (float, int)): nexps = dict([(filtername, nexps) for filtername in sequence]) if isinstance(sequence, ObservationArray) | isinstance(sequence[0], ObservationArray): self.observations = sequence else: self.observations = [] for filtername in sequence: for j in range(nvisits[filtername]): obs = ObservationArray() obs["filter"] = filtername obs["exptime"] = exptimes[filtername] obs["RA"] = self.ra obs["dec"] = self.dec obs["nexp"] = nexps[filtername] obs["scheduler_note"] = self.scheduler_note self.observations.append(obs) # Let's just make this an array for ease of use self.observations = np.concatenate(self.observations) order = np.argsort(self.observations["filter"]) self.observations = self.observations[order] n_filter_change = np.size(np.unique(self.observations["filter"])) # Make an estimate of how long a sequence will take. # Assumes no major rotational or spatial # dithering slowing things down. # Does not account for unavailable filters. self.approx_time = ( np.sum(self.observations["exptime"] + readtime * self.observations["nexp"]) + filter_change_time * n_filter_change ) # convert to days, for internal approximation in timestep sizes self.approx_time /= 3600.0 / 24.0 # This is the only index in the healpix arrays that will be considered self.indx = _ra_dec2_hpid(self.nside, self.ra, self.dec) # Tucking this here so we can look at how many observations # recorded - both for any note and for this note. self.extra_features["ObsRecorded"] = NObsCount(scheduler_note=None) self.extra_features["LastObs"] = LastObservation(scheduler_note=None) self.extra_features["ObsRecorded_note"] = NObsCount(scheduler_note=self.scheduler_note) self.extra_features["LastObs_note"] = LastObservation(scheduler_note=self.scheduler_note) def _generate_survey_name(self, target_name=None): if target_name is not None: self.survey_name = target_name else: self.survey_name = f"Field {self.ra_deg :.2f} {self.dec_deg :.2f}" @cached_property def roi_hpid(self): hpid = _ra_dec2_hpid(self.nside, self.ra, self.dec) return hpid
[docs] def check_continue(self, observation, conditions): # feasibility basis functions? """ This method enables external calls to check if a given observations that belongs to this survey is feasible or not. This is called once a sequence has started to make sure it can continue. XXX--TODO: Need to decide if we want to develop check_continue, or instead hold the sequence in the survey, and be able to check it that way. (note that this may depend a lot on how the SchedulerCSC works) """ return True
[docs] def calc_reward_function(self, conditions): # only calculates reward at the index for the RA/Dec of the field self.reward_checked = True if self._check_feasibility(conditions): self.reward = 0.0 for bf, weight in zip(self.basis_functions, self.basis_weights): basis_value = bf(conditions, indx=self.indx) self.reward += basis_value * weight if not np.isscalar(self.reward): self.reward = np.sum(self.reward[self.indx]) if np.any(np.isinf(self.reward)): self.reward = np.inf else: # If not feasible, negative infinity reward self.reward = -np.inf return self.reward
[docs] def generate_observations_rough(self, conditions): result = [] if self._check_feasibility(conditions): result = copy.deepcopy(self.observations) # Set the flush_by result["flush_by_mjd"] = conditions.mjd + self.approx_time + self.flush_pad # remove filters that are not mounted mask = np.isin(result["filter"], conditions.mounted_filters) result = result[mask] # Put current loaded filter first ind1 = np.where(result["filter"] == conditions.current_filter)[0] ind2 = np.where(result["filter"] != conditions.current_filter)[0] result = result[ind1.tolist() + (ind2.tolist())] return result
def __repr__(self): return ( f"<{self.__class__.__name__} survey_name='{self.survey_name}'" f", RA={self.ra}, dec={self.dec} at {hex(id(self))}>" )
[docs] class FieldAltAzSurvey(FieldSurvey): """A clone of FieldSurvey that takes alt,az rather than RA,dec. Parameters ---------- basis_functions : `list` [`rubin_scheduler.scheduler.basis_function`] List of basis_function objects detailers : `list` [`rubin_scheduler.scheduler.detailer`] objects The detailers to apply to the list of observations. az : `float` The azimuth of the field (degrees) alt : `float` The altitude of the field to observe (degrees) sequence : `list` [`str`] The sequence of observations to take. (specify which filters to use). nvisits : `dict` {`str`: `int`} Dictionary of the number of visits in each filter. Default of None will use a backup sequence of 20 visits per filter. Must contain all filters in sequence. exptimes : `dict` {`str`: `float`} Dictionary of the exposure time for visits in each filter. Default of None will use a backup sequence of 38s in u, and 29.2s in all other bands. Must contain all filters in sequence. nexps : dict` {`str`: `int`} Dictionary of the number of exposures per visit in each filter. Default of None will use a backup sequence of 1 exposure per visit in u band, 2 in all other bands. Must contain all filters in sequence. ignore_obs : `list` [`str`] or None Ignore observations with this string in the `scheduler_note`. Will ignore observations which match subsets of the string, as well as the entire string. Ignoring 'mysurvey23' will also ignore 'mysurvey2'. survey_name : `str` or None. The name to give this survey, for debugging and visualization purposes. Also propagated to the 'target_name' in the observation. The default None will construct a name based on the RA/Dec of the field. scheduler_note : `str` or None The value to include in the scheduler note. The scheduler note is for internal, scheduler, use for the purposes of identifying observations to ignore or include for a survey or feature. readtime : `float` Readout time for computing approximate time of observing the sequence. (seconds) filter_change_time : `float` Filter change time, on average. Used for computing approximate time for the observing sequence. (seconds) nside : `float` or None Nside for computing survey basis functions and maps. The default of None will use rubin_scheduler.utils.set_default_nside(). flush_pad : `float` How long to hold observations in the queue after they were expected to be completed (minutes).""" def __init__( self, basis_functions, az, alt, sequence="ugrizy", nvisits=None, exptimes=None, nexps=None, ignore_obs=None, survey_name=None, target_name=None, science_program=None, observation_reason=None, scheduler_note=None, readtime=2.4, filter_change_time=120.0, nside=DEFAULT_NSIDE, flush_pad=30.0, detailers=None, ): if detailers is None: detailers = [AltAz2RaDecDetailer()] # Check that an AltAz detailer is present names_match = ["AltAz2RaDecDetailer" in det.__class__.__name__ for det in detailers] if not np.any(names_match): ValueError( "detailers list does not include a AltAz2RaDecDetailer which is needed for FieldAltAzSurvey" ) self.az = np.radians(az) self.alt = np.radians(alt) self.alt_deg, self.az_deg = alt, az super().__init__( basis_functions=basis_functions, RA=0.0, dec=0.0, sequence=sequence, nvisits=nvisits, exptimes=exptimes, nexps=nexps, ignore_obs=ignore_obs, survey_name=survey_name, target_name=target_name, science_program=science_program, observation_reason=observation_reason, scheduler_note=scheduler_note, readtime=readtime, filter_change_time=filter_change_time, nside=nside, flush_pad=flush_pad, detailers=detailers, ) # Clobber and set to None self.ra = None self.dec = None # Backfill target name if it wasn't set if target_name is None: target_name = self.survey_name # Default self.observations have ra,dec. Swap to alt,az self.observations["RA"] = None self.observations["dec"] = None self.observations["alt"] = self.alt self.observations["az"] = self.az @property def roi_hpid(self): ra, dec = _approx_alt_az2_ra_dec([self.alt], [self.az], self.lat, self.lon, self.mjd) hpid = _ra_dec2_hpid(self.nside, ra, dec) return hpid def _generate_survey_name(self, target_name=None): if target_name is not None: self.survey_name = target_name else: self.survey_name = f"Field alt,az {self.alt_deg :.2f} {self.az_deg :.2f}"
[docs] def calc_reward_function(self, conditions): # Only calculates reward at the roi_hpid for the RA,dec coordinate # of the alt,az position at the current time. self.reward_checked = True self.mjd = conditions.mjd self.lat = np.radians(conditions.site.latitude) self.lon = np.radians(conditions.site.longitude) hpid = self.roi_hpid if self._check_feasibility(conditions): self.reward = 0.0 for bf, weight in zip(self.basis_functions, self.basis_weights): basis_value = bf(conditions, indx=hpid) self.reward += basis_value * weight if not np.isscalar(self.reward): self.reward = np.sum(self.reward[hpid]) if np.any(np.isinf(self.reward)): self.reward = np.inf else: # If not feasible, negative infinity reward self.reward = -np.inf return self.reward