Source code for rubin_scheduler.scheduler.surveys.pointings_survey

__all__ = ["PointingsSurvey"]

import healpy as hp
import numpy as np
import pandas as pd

from rubin_scheduler.scheduler.detailers import ParallacticRotationDetailer
from rubin_scheduler.scheduler.utils import IntRounded, ObservationArray
from rubin_scheduler.skybrightness_pre import dark_m5
from rubin_scheduler.utils import _angular_separation, _approx_ra_dec2_alt_az

from .base_survey import BaseSurvey


[docs] class PointingsSurvey(BaseSurvey): """Survey object for managing a set list of potential pointings without specified observing times. Does not follow the usual Survey class API by not using BasisFunction objects. Parameters ---------- observations : `np.array` An array of observations, from e.g., rubin_scheduler.scheduler.utils.ObservationArray expect "RA", "dec", and "note" to be filled, other columns ignored. gap_min : `float` The minimum gap to force between observations of the same spot (minutes) alt_min : `float` Altitude limit of the telescope (degrees). Default 20. alt_max : `float` Altitude limit of the telescope (degrees). Default 85. ha_max, ha_min : `float` (4,-4) hour angle limits (hours). Applied to all observations. Default 4,-4. weights : `dict` Dictionary with keys of method names and values of floats. Default of None uses {"visit_gap": 1.0, "balance_revisit": 1.0, "m5diff": 1.0, "wind_limit": 1.0, "slew_time": -1.0, "ha_limit": 0, "alt_limit": 0, "moon_limit": 0} wind_speed_maximum : `float` The maximum wind (m/s), mask any targets that would take more wind than that. Default 100 m/s. fiducial_FWHMEff : `float` A fiducial seeing value to use when computing dark sky depth. Default 0.7 arcsec. sun_alt_limit : `float` Have survey as infeasible when sun altitude is above the limit. Default -12 (degrees). track_notes_ngoal : `dict` If there are observations that should be tracked together (e.g., a sequence that should be observed together). Dict with keys of str and values of int. """ def __init__( self, observations, gap_min=25.0, moon_dist_limit=30.0, weights=None, alt_max=85.0, alt_min=20.0, detailers=None, ha_max=4, ha_min=-4, wind_speed_maximum=100, fiducial_FWHMEff=0.7, sun_alt_limit=-12.0, track_notes_ngoal=None, ): # Not doing a super here, don't want to even have an nside defined. # Check that observations["scheduler_note"] are unique, otherwise # incoming observations will get double-counted if np.size(np.unique(observations["scheduler_note"])) != np.size(observations): raise ValueError("observations['scheduler_note'] values are not unique") self.observations = observations self.gap_min = gap_min / 60.0 / 24.0 # to days self.moon_dist_limit = np.radians(moon_dist_limit) self.alt_max = np.radians(alt_max) self.alt_min = np.radians(alt_min) self.zeros = self.observations["RA"] * 0.0 self.wind_speed_maximum = wind_speed_maximum self.dark_map = None self.fiducial_FWHMEff = fiducial_FWHMEff self.sun_alt_limit = np.radians(sun_alt_limit) self.tracking_notes = {} self.track_notes_ngoal = track_notes_ngoal if track_notes_ngoal is not None: for key in track_notes_ngoal: self.tracking_notes[key] = 0 # Make mapping so it's fast to compute reward later # Note that user must be careful to keep sequence names unique self.sequence_mapping = {} for key in self.tracking_notes: self.sequence_mapping[key] = [] for i, obs in enumerate(observations): for key in self.sequence_mapping: if key in obs["scheduler_note"]: self.sequence_mapping[key].append(i) # convert hour angle limits to radians and 0-2pi self.ha_max = (np.radians(ha_max * 360 / 24) + 2 * np.pi) % (2 * np.pi) self.ha_min = (np.radians(ha_min * 360 / 24) + 2 * np.pi) % (2 * np.pi) # Arrays to track progress self.n_obs = np.zeros(self.zeros.size, dtype=int) self.last_observed = np.zeros(self.zeros.size, dtype=float) self.last_computed_reward = -1.0 if weights is None: self.weights = { "visit_gap": 1.0, "balance_revisit": 1.0, "m5diff": 1.0, "slew_time": -1.0, "wind_limit": 0.0, "ha_limit": 0, "alt_limit": 0, "moon_limit": 0, } else: self.weights = weights self.scheduled_obs = None # If there's no detailers, add one to set rotation to # Parallactic angle if detailers is None: self.detailers = [ParallacticRotationDetailer()] else: self.detailers = detailers def _check_feasibility(self, conditions): """Check if the survey is feasable in the current conditions""" # Simple feasability check. result = True # if the sun is too high if IntRounded(conditions.sun_alt) > IntRounded(self.sun_alt_limit): return False reward = self.calc_reward_function(conditions) if not np.isfinite(reward): result = False return result
[docs] def calc_reward_function(self, conditions): """Compute reward function using methods set by `weights` dict on init.""" if self.last_computed_reward != conditions.mjd: self.alt, self.az = _approx_ra_dec2_alt_az( self.observations["RA"], self.observations["dec"], conditions.site.latitude_rad, conditions.site.longitude_rad, conditions.mjd, lmst=conditions.lmst, ) self.ha = np.radians(conditions.lmst * 360.0 / 24.0) - self.observations["RA"] self.ha[np.where(self.ha < 0)] += 2.0 * np.pi self.reward = np.zeros(self.observations.size, dtype=float) # Apply all the weights to the reward # In theory, could track where the reward is already # NaN and not bother doing extra computations. for key in self.weights: self.reward += self.weights[key] * getattr(self, key)(conditions) self.last_computed_reward = conditions.mjd return np.nanmax(self.reward)
[docs] def generate_observations_rough(self, conditions): """Calculate reward function and highest reward observation. This is usually called by `generate_observations` which will take the result and then apply detailers to them. """ max_reward = self.calc_reward_function(conditions) # take the first one in the array if there's a tie # Could change logic to return multiple pointings winner = np.min(np.where(self.reward == max_reward)[0]) result = ObservationArray(n=1) result[0] = self.observations[winner].copy() return result
[docs] def add_observation(self, observation, indx=None): """Let survey know about a completed observation.""" # Check for a nore match indx = np.where(observation["scheduler_note"] == self.observations["scheduler_note"])[0] # Tracking arrays self.n_obs[indx] += 1 self.last_observed[indx] = observation["mjd"] # If we are tracking n observations of some type: for key in self.tracking_notes: if key in observation["scheduler_note"]: self.tracking_notes[key] += 1
[docs] def add_observations_array(self, observations_array_in, observations_hpid_in): """Like `add_observation`, but for a large array of completed observations.""" for unote in np.unique(observations_array_in["scheduler_note"]): matching = np.where(observations_array_in["scheduler_note"] == unote)[0] indx = np.where(self.observations["scheduler_note"] == unote)[0] self.n_obs[indx] += np.size(matching) self.last_observed[indx] = observations_array_in["mjd"][matching].max() for key in self.tracking_notes: if key in unote: self.tracking_notes[key] += np.size(matching)
[docs] def ha_limit(self, conditions): """Apply hour angle limits.""" result = self.zeros.copy() # apply hour angle limits result[ np.where( (IntRounded(self.ha) > IntRounded(self.ha_max)) & (IntRounded(self.ha) < IntRounded(self.ha_min)) ) ] = np.nan return result
[docs] def alt_limit(self, conditions): """Apply altitude limits.""" result = self.zeros.copy() result[np.where(IntRounded(self.alt) > IntRounded(self.alt_max))] = np.nan result[np.where(IntRounded(self.alt) < IntRounded(self.alt_min))] = np.nan return result
[docs] def moon_limit(self, conditions): """Apply moon distanve limit.""" result = self.zeros.copy() dists = _angular_separation( self.observations["RA"], self.observations["dec"], conditions.moon_ra, conditions.moon_dec ) result[np.where(IntRounded(dists) < IntRounded(self.moon_dist_limit))] = np.nan return result
[docs] def wind_limit(self, conditions): """Apply the wind limit.""" result = self.zeros.copy() if conditions.wind_speed is None or conditions.wind_direction is None: return result wind_pressure = conditions.wind_speed * np.cos(self.az - conditions.wind_direction) result -= wind_pressure**2.0 mask = IntRounded(wind_pressure) > IntRounded(self.wind_speed_maximum) result[mask] = np.nan return result
[docs] def visit_gap(self, conditions): """Enforce a minimum visit gap.""" diff = conditions.mjd - self.last_observed too_soon = np.where(IntRounded(diff) < IntRounded(self.gap_min))[0] result = self.zeros.copy() # Using NaN makes it a hard limit # could have a weight and just subtract from the reward result[too_soon] = np.nan return result
[docs] def balance_revisit(self, conditions): """Code to balance revisiting different targets.""" sum_obs = np.sum(self.n_obs) result = np.floor(1.0 + self.n_obs / sum_obs) result[np.where(self.n_obs == 0)] = 1 return result
def slew_time(self, conditions): # Interpolate the conditions slewtime map to our positions # Could do something more sophisticated, but this is probably fine. result = hp.get_interp_val( conditions.slewtime, np.degrees(self.observations["RA"]), np.degrees(self.observations["dec"]), lonlat=True, ) # Could do a filter check here and add a penalty for changing # filters return result
[docs] def sequence_boost(self, conditions): """Boost the reward if a sequence is incomplete.""" result = self.zeros.copy() for key in self.sequence_mapping: result[self.sequence_mapping[key]] = self.tracking_notes[key] % self.track_notes_ngoal[key] return result
def _dark_map(self, conditions): """Generate the dark map if needed Constructs self.dark_map which is a dict with keys of filtername and values of HEALpix arrays that are the darkest expected 5-sigma limiting depth expected for that region of sky """ self.dark_map = {} for filtername in np.unique(self.observations["filter"]): self.dark_map[filtername] = dark_m5( conditions.dec, filtername, conditions.site.latitude_rad, self.fiducial_FWHMEff )
[docs] def m5diff(self, conditions): """Compute difference between current 5-sigma limiting depth and the depth at the same coordinates in "ideal" conditions. """ if self.dark_map is None: self._dark_map(conditions) result = np.zeros(self.observations.size) for filtername in np.unique(self.observations["filter"]): indx = np.where(self.observations["filter"] == filtername)[0] diff_map = conditions.m5_depth[filtername] - self.dark_map[filtername] result[indx] = hp.get_interp_val( diff_map, np.degrees(self.observations["RA"][indx]), np.degrees(self.observations["dec"][indx]), lonlat=True, ) return result
def _reward_to_scalars(self, reward): scalar_reward = np.nanmax(reward) n_unmasked = np.sum(np.isfinite(reward)) return scalar_reward, n_unmasked
[docs] def make_reward_df(self, conditions, accum=True): """Create a pandas.DataFrame describing the reward from the survey.""" feasibility = [] max_rewards = [] n_possibles = [] accum_rewards = [] accum_areas = [] bf_label = [] bf_class = [] basis_weights = self.weights.values() short_labels = self.bf_short_labels tracking_reward = np.zeros(self.observations.size, dtype=float) for method_name in self.weights: bf_label.append(short_labels[method_name]) bf_class.append(None) bf_reward = self.weights[method_name] * getattr(self, method_name)(conditions) max_reward, n_possible = self._reward_to_scalars(bf_reward) if np.isnan(max_reward) | (n_possible == 0): this_feasibility = False else: this_feasibility = True feasibility.append(this_feasibility) max_rewards.append(max_reward) n_possibles.append(n_possible) if accum: tracking_reward += bf_reward accum_reward, accum_area = self._reward_to_scalars(tracking_reward) accum_rewards.append(accum_reward) accum_areas.append(accum_area) reward_data = { "method": bf_label, "blank": bf_class, "feasible": feasibility, "max_reward": max_rewards, "n_possibles": n_possibles, "weight": basis_weights, } if accum: reward_data["max_accum_reward"] = accum_rewards reward_data["accum_n"] = accum_areas reward_df = pd.DataFrame(reward_data) return reward_df
[docs] def reward_changes(self, conditions): """List the rewards for each basis function used by the survey.""" reward_values = [] for key in self.weights: reward_values.append(np.nanmax(getattr(self, key)(conditions))) names = list(self.weights.keys()) return list(zip(names, reward_values))
@property def bf_short_labels(self): long_labels = list(self.weights.keys()) label_bases = [label.split(" @")[0] for label in long_labels] duplicated_labels = set([label for label in label_bases if label_bases.count(label) > 1]) short_labels = [] label_count = {k: 0 for k in duplicated_labels} for label_base in label_bases: if label_base in duplicated_labels: label_count[label_base] += 1 short_labels.append(f"{label_base} {label_count[label_base]}") else: short_labels.append(label_base) label_map = dict(zip(long_labels, short_labels)) return label_map