Source code for rubin_scheduler.scheduler.utils.observation_array

__all__ = (
    "ObservationArray",
    "ScheduledObservationArray",
)

import numpy as np

HANDLED_FUNCTIONS = {}


[docs] class ObservationArray(np.ndarray): """Class to work as an array of observations Parameters ---------- n : `int` Size of array to return. Default 1. The numpy fields have the following labels. RA : `float` The Right Acension of the observation (center of the field) (Radians) dec : `float` Declination of the observation (Radians) mjd : `float` Modified Julian Date at the start of the observation (time shutter opens) exptime : `float` Total exposure time of the visit (seconds) band : `str` The band used. Should be one of u, g, r, i, z, y. filter : `str` The physical filter name. rotSkyPos : `float` The rotation angle of the camera relative to the sky E of N (Radians). Will be ignored if rotTelPos is finite. If rotSkyPos is set to NaN, rotSkyPos_desired is used. rotTelPos : `float` The rotation angle of the camera relative to the telescope (radians). Set to np.nan to force rotSkyPos to be used. rotSkyPos_desired : `float` If both rotSkyPos and rotTelPos are None/NaN, then rotSkyPos_desired (radians) is used. If rotSkyPos_desired results in a valid rotTelPos, rotSkyPos is set to rotSkyPos_desired. If rotSkyPos and rotTelPos are both NaN, and rotSkyPos_desired results in an out of range value for the camera rotator, then rotTelPos_backup is used. rotTelPos_backup : `float` Rotation angle of the camera relative to the telescope (radians). Only used as a last resort if rotSkyPos and rotTelPos are set to NaN and rotSkyPos_desired results in an out of range rotator value. nexp : `int` Number of exposures in the visit. flush_by_mjd : `float` If we hit this MJD, we should flush the queue and refill it. scheduler_note : `str` (optional) Usually good to set the note field so one knows which survey object generated the observation. target_name : `str` (optional) A note about what target is being observed. This maps to target_name in the ConsDB. Generally would be used to identify DD, ToO or special targets. science_program : `str` (optional) Science program being executed. This maps to science_program in the ConsDB, although can be overwritten in JSON BLOCK. Generally would be used to identify a particular program for DM. observation_reason : `str` (optional) General 'reason' for observation, for DM purposes. (for scheduler purposes, use `scheduler_note`). This maps to observation_reason in the ConsDB, although could be overwritten in JSON BLOCK. Most likely this is just "science" or "FBS" when using the FBS. Notes ----- On the camera rotator angle. Order of priority goes: rotTelPos > rotSkyPos > rotSkyPos_desired > rotTelPos_backup where if rotTelPos is NaN, it checks rotSkyPos. If rotSkyPos is set, but not at an accessible rotTelPos, the observation will fail. If rotSkyPos is NaN, then rotSkyPos_desired is used. If rotSkyPos_desired is at an inaccessbile rotTelPos, the observation does not fail, but falls back to the value in rotTelPos_backup. Lots of additional fields that get filled in by the model observatory when the observation is completed. See documentation at: https://rubin-scheduler.lsst.io/output_schema.html """ def __new__(cls, n=1): dtypes = [ ("ID", int), ("RA", float), ("dec", float), ("mjd", float), ("flush_by_mjd", float), ("exptime", float), ("band", "U40"), ("filter", "U40"), ("rotSkyPos", float), ("rotSkyPos_desired", float), ("nexp", int), ("airmass", float), ("FWHM_500", float), ("FWHMeff", float), ("FWHM_geometric", float), ("skybrightness", float), ("night", int), ("slewtime", float), ("visittime", float), ("slewdist", float), ("fivesigmadepth", float), ("alt", float), ("az", float), ("pa", float), ("pseudo_pa", float), ("clouds", float), ("moonAlt", float), ("sunAlt", float), ("scheduler_note", "U40"), ("target_name", "U40"), ("target_id", int), ("lmst", float), ("rotTelPos", float), ("rotTelPos_backup", float), ("moonAz", float), ("sunAz", float), ("sunRA", float), ("sunDec", float), ("moonRA", float), ("moonDec", float), ("moonDist", float), ("solarElong", float), ("moonPhase", float), ("cummTelAz", float), ("observation_reason", "U40"), ("science_program", "U40"), ] obj = np.zeros(n, dtype=dtypes).view(cls) return obj
[docs] def tolist(self): """Convert to a list of 1-element arrays""" obs_list = [] for obs in self: new_obs = self.__class__(n=1) new_obs[0] = obs obs_list.append(new_obs) return obs_list
def __array_function__(self, func, types, args, kwargs): # If we want "standard numpy behavior", # convert any ObservationArray to ndarray views if func not in HANDLED_FUNCTIONS: new_args = [] for arg in args: if issubclass(arg.__class__, ObservationArray): new_args.append(arg.view(np.ndarray)) else: new_args.append(arg) return func(*new_args, **kwargs) if not all(issubclass(t, ObservationArray) for t in types): return NotImplemented return HANDLED_FUNCTIONS[func](*args, **kwargs)
def implements(numpy_function): def decorator(func): HANDLED_FUNCTIONS[numpy_function] = func return func return decorator @implements(np.concatenate) def concatenate(arrays): result = arrays[0].__class__(n=sum(len(a) for a in arrays)) return np.concatenate([np.asarray(a) for a in arrays], out=result)
[docs] class ScheduledObservationArray(ObservationArray): """Make an array to hold pre-scheduling observations Note ---- mjd_tol : `float` The tolerance on how early an observation can execute (days). Observation will be considered valid to attempt when mjd-mjd_tol < current MJD < flush_by_mjd (and other conditions below pass) dist_tol : `float` The angular distance an observation can be away from the specified RA,Dec and still count as completing the observation (radians). alt_min : `float` The minimum altitude to consider executing the observation (radians). alt_max : `float` The maximuim altitude to try observing (radians). HA_max : `float` Hour angle limit. Constraint is such that for hour angle running from 0 to 24 hours, the target RA,Dec must be greather than HA_max and less than HA_min. Set HA_max to 0 for no limit. (hours) HA_min : `float` Hour angle limit. Constraint is such that for hour angle running from 0 to 24 hours, the target RA,Dec must be greather than HA_max and less than HA_min. Set HA_min to 24 for no limit. (hours) sun_alt_max : `float` The sun must be below sun_alt_max to execute. (radians) moon_min_distance : `float` The minimum distance to demand the moon should be away (radians) observed : `bool` If set to True, scheduler will probably consider this a completed observation and never attempt it. """ def __new__(cls, n=1): # Standard things from the usual observations dtypes1 = [ ("ID", int), ("RA", float), ("dec", float), ("mjd", float), ("flush_by_mjd", float), ("exptime", float), ("band", "U1"), ("rotSkyPos", float), ("rotTelPos", float), ("rotTelPos_backup", float), ("rotSkyPos_desired", float), ("nexp", int), ("scheduler_note", "U40"), ("target_name", "U40"), ("science_program", "U40"), ("observation_reason", "U40"), ] # New things not in standard ObservationArray dtype2 = [ ("mjd_tol", float), ("dist_tol", float), ("alt_min", float), ("alt_max", float), ("HA_max", float), ("HA_min", float), ("sun_alt_max", float), ("moon_min_distance", float), ("observed", bool), ] obj = np.zeros(n, dtype=dtypes1 + dtype2).view(cls) return obj
[docs] def to_observation_array(self): """Convert the scheduled observation to a Regular ObservationArray """ result = ObservationArray(n=self.size) in_common = np.intersect1d(self.dtype.names, result.dtype.names) for key in in_common: result[key] = self[key] return result